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Abstract 

 

 

CHARACTERIZATION OF THE NORSPERMIDINE/SPERMIDINE ABC-TYPE 

TRANSPORTER, POTABCD1, IN VIBRIO CHOLERAE 

 

Blake Edward Sanders  

B.S., Mars Hill College 

M.S., Appalachian State University 

 

 

Chairperson:  Dr. Ece Karatan 

 

 

 Vibrio cholerae is an intestinal pathogen that also thrives in aquatic environments 

through forming biofilms, matrix-bound aggregation of cells offering physical protection 

from many environmental stressors and allowing the bacterium to survive harmful 

conditions.  Formation of biofilm by V. cholerae can be regulated by various environmental 

signals including small molecules called polyamines.  Polyamines are a ubiquitous class of 

molecules that are involved in cell growth and regulate a wide variety of biological functions 

through various mechanisms including transport.  Bacteria contain multiple polyamine 

transport systems, generally ABC transporters composed of a substrate binding protein in the 

periplasm, two channel forming proteins, and a membrane associated ATPase involved in 

energy supply. V. cholerae has a putative ABC transporter, PotABCD1.  Previous research in 

our lab has investigated the role of the substrate binding protein of this system, PotD1 and 

has shown that PotD1 is responsible for transport of the polyamines spermidine and 

norspermidine into V. cholerae.  Moreover, PotD1 mutants displayed an increased biofilm 
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phenotype when compared with wild type.  The roles of the other components of the 

polyamine transport system still need further investigation.  The objectives of this study were 

to more thoroughly characterize the norspermidine/spermidine uptake system PotABCD2D1, 

and determine whether imported polyamines or the components of the transporter system 

affect biofilm formation.   Also, due to the capability of PotD1 to facilitate transport of both 

norspermidine and spermidine, the preference of this protein for one polyamine over the 

other was investigated.  My results to date indicate that PotB and PotC, the transmembrane 

channel forming proteins, are involved in spermidine and norspermidine uptake. In addition, 

PotD1 does not appear to have a large preference for norspermidine over spermidine under 

the conditions tested.  PotA, PotB, PotC, and PotD mutants display increased biofilm growth 

compared to wild type, suggesting that the components of the transport system do not seem 

to play a role in biofilm formation, but rather spermidine import into the cell mediates this 

phenotype.    The role in polyamine uptake of PotA, the ATPase component of the uptake 

system is still under investigation.  Because ABC transporters have a profound impact on 

bacterial physiology, a better understanding of these systems is crucial.  This work not only 

establishes PotABCD1 as the first norspermidine transporter ever reported in any species, but 

also further elucidates the role polyamines play in V. cholerae biofilm formation, which may 

aid in survival in aquatic conditions.   
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Introduction 

 

 Polyamines are a ubiquitous class of small polycationic molecules with a 

hydrocarbon backbone and multiple amine groups.  Unlike other cations, polyamines are 

arranged in a unique charge-structure conformation with the positive charges being found 

at regularly spaced intervals along the hydrocarbon chains.  This arrangement allows for 

these molecules to serve as electrostatic bridges between negative phosphate charges on 

nucleic acid and other negatively charged polymers (Shah & Swiatlo, 2008).   

Polyamines within the cell are predominantly found as complexes with RNA and work 

together with cations like Mg
2+

 to stabilize higher orders of structure (Shah & Swiatlo, 

2008). Polyamines such as putrescine (1,4-diaminobutane) and cadaverine (1,5-

diaminopentane) are diamines with two amino groups each, while spermidine and 

spermine contain three and four amino groups respectively (Shah & Swiatlo, 2008). 

Putrescine, spermidine, spermine, and cadaverine are the most widely distributed cellular 

polyamines and are essential for normal cellular growth and multiplication of both 

prokaryotic and eukaryotic cells, with the intracellular concentration of spermidine being 

higher than that of putrescine in almost all bacteria (Cohen, 1998) (Fig. 1).   

 Polyamines are vital for cell proliferation, growth, and development in both 

prokaryotes and eukaryotes.  These molecules have also been shown to regulate a wide 

variety of cellular processes like regulation of transcription and translation, virulence, and 

biofilm formation (Goytia & Shafer, 2010; Igarashi & Kashiwagi, 2000; Jelsbak et al., 
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2012; Kurihara et al., 2013; Ware et al., 2006; Yoshida et al., 2004).  Lately, polyamines 

have been reported to be linked to microbial carcinogenesis, host cell apoptosis, escape 

from phagolysosomes, bacteriocin production, toxin activity, and protection from 

oxidative and acid stress (Shah & Swiatlo, 2008).  Because of these multifaceted roles 

polyamines facilitate in bacteria, the modulation of these molecules is crucial and 

regulated by biosynthesis, degradation, and transport (Igarashi & Kashiwagi, 1999).   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Structures of common microbial polyamines.  Chemical structures of common 

polyamines found in bacteria.  Structures were drawn using ChemSketch software.   

  

 At physiological pH, polyamines are positively charged; therefore, an active 

transporter is essential for these molecules to pass through the inner membrane of Gram-
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negative bacteria.  Polyamine uptake has been extensively studied and characterized in 

the bacterium Escherichia coli, which includes two ABC transporters that are involved in 

spermidine and putrescine import.  ABC transporters encompass one of the largest of all 

paralogous protein families with diverse functions.  In fact almost 5% of the entire E. coli 

genome encodes components of ABC transporters (Linton & Higgins, 1998).  These 

transporters convert the energy gained from ATP hydrolysis into trans-bilayer movement 

of substrates either into the cytoplasm or out of the cytoplasm (Higgins, 2001).  These 

systems are widespread among living organisms, being detected in all genera of the three 

domains of life, and contribute to a wide variety of physiological roles.   

 Although widespread among organisms, the number of ABC transporters differs 

among species with organisms like E. coli, which live in diverse environments and adapt 

to a wide variety of conditions containing around 70 ABC transporters, and other 

organisms with more restrictive lifestyles having fewer transporters (Higgins, 2001).  

ABC transporters have been characterized with specificity for a wide range of substrates 

including sugars and other carbohydrates, amino acids, peptides, polyamines, metal ions, 

sulfate, iron, and complex polysaccharides (Garmory & Titball, 2004; Higgins, 2001).  

Even though most reported transporters show tight substrate specificity, some are 

multispecific such as the oligopeptide transporter which handles all di- and tripeptides 

and others have broad spectrum specificity for hydrophobic compounds like the LmrA 

multidrug transporter in Lactococcis lactis (Higgins, 2001). 

 The basic unit of an ABC transporter consists of four core domains (Hyde et al., 

1990), two membrane associated domains or transmembrane domains (TMDs) and two 

ATP-binding domains or nucleotide binding domains (NBDs) (Higgins, 2001). The two 
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TMDs span the membrane multiple times via α-helices, forming the channel through 

which the solute traverses the membrane.  The NBD’s catalyze ATP hydrolysis.  These 

domains are hydrophilic and peripherally associated with the cytoplasmic face of the 

membrane (Higgins, 2001). The conservation of this entire domain is important in 

defining this superfamily of transporters (Higgins et al., 1986).  In many ABC 

transporters, especially importers, supporting domains have been recruited for function 

(Fig. 2) (Garmory & Titball, 2004).  The substrate binding proteins (SBPs) bind the 

substrate external to the cell and deliver it to the membrane-associated complex (Higgins, 

2001).  Import across the outer membrane may involve outer membrane proteins (OMPs), 

indeed most small substrates, like polyamine cations cross the outer membrane through 

the non-specific porins such as OmpF or OmpC of Enterobacteriacea (Nikaido, 2003). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Schematic diagram of typical organization of ABC importers in bacteria. 

ABC transporters utilize additional domains for transport.  OMP, outer membrane 

protein. SBP, substrate binding protein. TMD, transmembrane domain.  NBD, nucleotide 

binding domain or ATP-binding domain. Modified from Garmory and Titball. 2004.   
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 The first step in transport involves substrate recognition by the binding protein.  

Once bound, a conformational change occurs generally engulfing the ligand.  The binding 

protein is then in a closed position, which exposes potential binding sites for interaction 

with the TMDs.  The ligand is then released from the binding protein to interact with the 

channel-forming transmembrane domain.   Substrate binding leads to a conformational 

change in the TMDs which is transmitted to the NBDs to initiate ATP hydrolysis 

(Higgins, 2001)   Binding and hydrolysis of ATP induces conformational changes in the 

NBDs that are transmitted to the TMDs via non-covalent interactions.   

 At this interface are conserved short α-helices, located in cytoplasmic loops 

between transmembrane segments; these helices comprise the majority of contact 

between the interface of these separate domains, accordingly these are termed coupling 

helices (Dawson et al., 2007) (Fig. 3).  Upon binding of ATP, the gap between the NBD 

closes, bringing the coupling helices closer together.  The TMDs flip from facing inward 

to facing outward, exposing binding and extrusion sites to opposite sides of the 

membrane, consequently moving the substrate across the bilayer (Locher, 2009) (Fig. 4).     

  

 

 

 

 

Fig. 3. Diagram depicting coupling mechanism of ABC transporters for import. 

Binding of ATP triggers the closing of a gap between the ABCs, which moves the 

coupling helices closer together changing the conformation of the transmembrane 

domains (TMDs).  Hydrolysis of ATP and release of products change the TMDs back to 

an inward conformation.  Modified from Locher, 2009.    
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Fig. 4. Schematic of the structure and mechanism of ABC importers. (i) Coupling 

mechanism in the absence of substrate or binding protein.  (ii) Two conformations are 

essential for successful transport of substrate by ABC transporter.  Substrate binding 

protein attaches to ligand and delivers to the transport system, where ATP is then bound 

by ABC to change conformation of transmembrane domains.  After hydrolyzing ATP, the 

conformation of the TMDs changes inward moving substrate through.  Modifed from 

Locher, 2009.   

 

 Polyamine ABC transporters in E. coli and many other bacterial species are 

organized as four gene operons and designated as potABCD, a spermidine preferential 

system, and potFGHI, a putrescine specific uptake system (Igarashi & Kashiwagi, 1999) 

(Fig. 5).  PotD and PotF are the periplasmic substrate binding proteins that bind the 

extracellular polyamines, while PotA and PotG proteins are the membrane-associated 

cytosolic-ATPases involved in the energy supply.  The remaining proteins of these 

systems have membrane spanning α-helices and form transmembrane channels for 

polyamine transport.  PotB and PotC of the spermidine uptake system contain six putative 

transmembrane segments linked by hydrophilic segments of variable length. 
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Fig. 5.  Polyamine ABC importers in E. coli. E. coli contains two polyamine 

transporters that have been well characterized.  PotABCD is a spermidine preferential 

importer, while PotFGHI is a putrescine specific importer.  Adapted from Igarashi and 

Kashiwagi, 1999.   

 

 Research has shown that the substrate binding proteins of the ABC importer not 

only function in polyamine transport, but also are involved in other important 

phenotypes.  The substrate binding protein of the spermidine uptake system, PotD, plays 

a role as a transcriptional inhibitor of the potABCD operon in E. coli when excess PotD is 

present (Antognoni et al., 1999).  In addition, E. coli PotD has been shown to influence 

swarming motility, a bacterial process that allows cells to move in a coordinated manner 

on surfaces and expand populations (Kurihara et al., 2009).  Furthermore, E. coli PotD is 

speculated to be involved in initiation of an SOS response. Bacteria respond to stress and 

DNA damage by stimulation of the SOS response, leading to arrest of cell division and 

facilitation of DNA repair (Manasherob et al., 2012).  In Streptococcus pneumoniae, a 

Gram-positive human pathogen and one of the causes of bacterial pneumonia, PotD was 

shown to influence both systemic and pulmonary infection, where attenuation of 
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virulence was observed in a mouse model when potD was disrupted (Ware et al., 2006).  

While there have been studies on the polyamine uptake systems in E. coli and S. 

pneumoniae, very little is known about the uptake system in Vibrio cholerae.   

 V. cholerae is a Gram negative, aquatic bacterium that resides in brackish waters, 

rivers, and estuaries, and is the causative agent of the intestinal disease cholera.  Cholera 

is a major public health problem antagonizing developing countries where outbreaks 

occur due to poverty and poor sanitation.  The disease is characterized by severe 

dehydration and voluminous diarrhea, which can lead to death in 50-70% of untreated 

patients (Faruque et al., 1998). V. cholerae contains a putative polyamine importer 

PotABCD2D1 (Fig. 6).  The genomic locus encodes homologues of the PotABCD 

transporter proteins of E. coli, however, it contains two genes that are annotated as potD, 

namely, potD1 and potD2.  Mutational analysis of these genes encoding the two substrate 

binding proteins has shown that PotD1 plays a role in the transport of both spermidine 

and norspermidine, while PotD2 is not involved in the uptake of these two polyamines 

(Cockerell et al., 2014; Mcginnis et al., 2009). Furthermore, PotD1 mutants display an 

increased biofilm phenotype when compared with wildtype (Mcginnis et al., 2009).   

 V. cholerae forms biofilms to increase survival capability, aiding in protection 

from environment stressors like pH, temperature, UV radiation, osmotic shock, and 

desiccation (De Carvalho, 2007; Donlan & Costerton, 2002; Flemming, 1993).  A biofilm 

is an aggregation of microorganisms formed on environmental abiotic surfaces. In 

addition, biofilms can form on biotic surfaces in the natural environment such as 

epithelial cells within the human body (Karatan & Watnick, 2009).  Biofilms are bound 

together by an extrapolymeric substance (EPS) that creates a matrix encapsulating the 
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bacteria with many other molecules such as polysaccharides, extracellular DNA, and 

proteins.  The development of biofilm is a dynamic event that can be regulated and 

influenced by various environmental signals such as osmolarity, nucleosides, sugars, 

quorum sensing, and polyamines (Hammer & Bassler, 2003; Haugo & Watnick, 2002; 

Kapfhammer et al., 2005; Karatan et al., 2005).   

  

 

 

 

 

 

 

 

 

 

Fig. 6.  Schematic diagram of putative polyamine transport system PotABCD2D1 in 

V. cholerae. This system consists of PotA (an ATPase), PotB and PotC (channel forming 

proteins), and two substrate binding proteins PotD1 and PotD2.   

  

 The polyamines spermidine and norspermidine are some of the environmental 

signals regulating biofilm formation in V. cholerae.  The polyamine distribution of Vibrio 

species is unique in that norspermidine (Fig. 7), a polyamine similar to spermidine with 

two C3 chains, is one of the dominant polyamines along with putrescine, while 

spermidine may be found only in small amounts under normal growth settings 
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(Yamamoto et al., 1983).  Furthermore, norspermidine has been found to be a major 

polyamine in numerous aquatic plants and aquatic organisms (Hamana et al., 1998; 

Hamana et al., 1991).  Norspermidine is synthesized by decarboxylation of 

carboxynorspermidine by carboxynorspermidine decarboxylase encoded by the nspC 

gene (Lee et al., 2009).  Deletion of this gene, results in inhibition of biofilm due to the 

lack of norspermidine in V. cholerae (Lee et al., 2009).  Norspermidine has also been 

shown to act as an intercellular signaling molecule modulating biofilm formation through 

the NspS-MbaA signal transduction pathway, where NspS interacts with the periplasmic 

region of MbaA to influence its enzymatic activity (Karatan et al., 2005). Binding of 

NspS to norspermidine is thought to increase the inhibitory effect of NspS on MbaA, 

increasing levels of the bacterial secondary messenger, c-di-GMP, necessary for EPS 

production, thus increasing biofilm formation (Karatan et al., 2005).  Additionally 

binding of NspS to spermidine has the opposite effect (Mcginnis et al., 2009).   

 

 

 

Fig. 7. Structure of the triamine, norspermidine.  Chemical structure of 

norspermidine, one of the dominant polyamines in Vibrio species.  Similar to spermidine 

with one methylene group difference.  Structure was drawn using ChemSketch program.   

  

 While the effects of external polyamines on biofilm formation in V. cholerae have 

been elucidated, the mechanism by which intracellular polyamines influence this 

phenotype is still unknown in this bacterium.  The effect of internal polyamines on 

biofilm formation has been studied in E. coli and Yersinia pestis.  In E. coli, a set of 

genes whose expression is enhanced by polyamines at the translational level are defined 
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as the “polyamine modulon” (Igarashi & Kashiwagi, 2006). There are several 

mechanisms fundamental to polyamine stimulation of the production of the members of 

the modulon.  One of the major ways that polyamines stimulate synthesis is when a 

Shine-Dalgarno (SD) sequence in the mRNA is distant from the initiation codon AUG. In 

this case the polyamine aids in the formation of the initiation complex by relaxing the 

structure by narrowing the distance between the SD sequence and initiation codon AUG 

(Igarashi & Kashiwagi, 2006).  Recently, it has been shown that the polyamine modulon 

is not only involved in cell growth and viability, but also plays a role in biofilm formation 

through polyamines stimulating production of CpxR and UvrY, response regulator 

proteins in two component signal transducing systems (Sakamoto et al., 2012).  The Cpx 

system controls expression of genes encoding proteins required for formation of E. coli 

curli fimbriae, the essential biofilm constituent that plays a key role in initial adhesion 

and cell to cell interactions (Beloin et al., 2008; Jubelin et al., 2005).  UvrY controls 

activity of the carbon storage regulator in E. coli, inhibiting glycogen biosynthesis and 

catabolism, gluconeogenesis, and biofilm formation (Romeo, 1998).   

  Y. pestis has a rodent-flea life cycle with transmission depending heavily upon a 

set of genes termed the hemin storage locus (hms).  These genes facilitate blockage, 

eventually leading to colonization of the proventricular valve that divides the midgut 

from the esophagus (Patel et al., 2006). HmsHFRS are necessary for the biosynthesis of 

the biofilm polysaccharide poly-β-1,6-N-acetyl-D-glucosamine in Y. pestis (Wortham et 

al., 2010).  Polyamines have been suggested to play a role in Y. pestis biofilm formation 

by serving as signaling molecules affecting gene or protein expression, an intermediate in 

biofilm synthesis, or a structural component of biofilm (Patel et al., 2006).  Further 
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research on Y. pestis biofilm formation has provided evidence that polyamines, 

specifically putrescine, affect the level of key Hms proteins.  Transcriptional reporters 

and qRT-PCR have also determined that polyamines are not affecting transcription of the 

hms genes or their mRNA stability (Wortham et al., 2010).  But rather, polyamines are 

enhancing the translation of key Hms mRNAs (Wortham et al., 2010).   

 The goal of this study was to more thoroughly characterize the 

norspermidine/spermidine uptake system PotABCD2D1 and to further understand the 

effect polyamines have on V. cholerae biofilm formation.  In this study, I found that PotB 

and PotC, the transmembrane channel forming proteins, are involved in spermidine and 

norspermidine uptake.  PotA, PotB, PotC, and PotD mutants display increased biofilm 

growth compared to wild type, suggesting that the components of the transport system do 

not seem to play a role in biofilm formation, but rather spermidine import into the cell 

mediates this phenotype.  In addition, PotD1 does appear to have a slight preference for 

norspermidine over spermidine under the conditions tested.  Because ABC transporters 

have a profound impact on bacterial physiology, a better understanding of the mechanism 

and abilities of ABC transporters is crucial.  This work not only establishes 

PotABCD2D1 as the first norspermidine transporter ever reported in any species, but also 

further elucidates the role polyamines play in V. cholerae biofilm formation. 
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Materials and Methods 

Bacterial strains, plasmids, primers, media, and reagents 

 The bacterial strains, plasmids, and primers used throughout this study are listed 

in Table 1, Table 2, and Table 3, respectively.  Primer synthesis and DNA sequencing 

was performed by Eurofins MWG Operon (Huntsville, AL) and Cornell University 

(Ithaca, NY), respectively.  Strains were grown on Luria-Bertani broth (LB) (1% 

Tryptone, 0.5% Yeast Extract, 85 mM NaCl) agar with relevant antibiotics for 24 hours 

at 27°C before being incubated in tryptone broth. Tryptone broth (1% Tryptone, 85 mM 

NaCl) contains approximately 3 μM spermidine.  Cultures were grown in tryptone broth 

unless otherwise stated.  The polyamines, putrescine, cadaverine, diaminopropane, 

spermidine and norspermidine, were purchased from Sigma-Aldrich (St. Louis, MO).  

The restriction enzymes, EcoRI, NcoI, XhoI, SpeI, ApaI , and Phusion and OneTaq 

polyamerases were purchased from New England Biolabs (Beverly, MA).  Chemicals 

and reagents were purchased from Alfa Aesar (Ward Hill, MA), Amresco (Solon, OH), 

Fischer-Scientific (Fairlawn, NJ), or Sigma-Aldrich (St. Louis, MI) unless otherwise 

stated.  
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Table 1. Bacterial strains 

 

Deletion of the potB and potC genes 

 To determine the role of the transmembrane permeases of the putative ABC-type 

transporter PotABCD1, potB and potC genes were deleted using double homologous 

recombination.  Previous studies in the Karatan lab have already constructed in-frame 

Strains Genotype Reference 

E. coli   

DH5α F- Φ80lacZΔM15, Δ(lacZYA-argF) U169 deoR, recA1, phoA, 

endA1 hsdR17 (rk2, mk+) supE44, thi-1 gyrA96, relA1,  λ- 

Invitrogen 

DH5αλpir supE44, ΔlacU169 hsdR17, recA1 endA1 gyrA96 thi-1 relA1, 

λpir 

(Hanahan, 1983) 

SM10λpir thi thr leu tonA lacY supE recA::RP4-2-Tc::MuλpirR6K;  Km
R
 (Miller & 

Mekalanos, 1988) 

V.cholerae   

PW357 MO10 lacz::vpsLp  lacZ, Sm
R 

(Karatan et al., 
2005) 

AK160 PW357 ΔpotD1, Sm
R 

(Cockerell et al., 
2014) 

AK314 PW357 nspC::kan, Kan
R
, Sm

R
 (Cockerell et al., 

2014) 
AK317 PW357  nspC::kan, ΔpotD1,  Kan

R
, Sm

R
 (Cockerell et al., 

2014) 
AK333 PW357  nspC::kan, ΔpotB, Kan

R
, Sm

R
 w/ potD1-V5 Rutkovsky and 

Karatan 

(unpublished) 

AK334 PW357  nspC::kan, Kan
R
, Sm

R
 w/ pACYC184 Rutkovsky and 

Karatan 

(unpublished) 

AK395 PW357 ΔpotB, Sm
R
 This study 

AK397 PW357 ΔpotC, Sm
R
 This study 

AK399 PW357  nspC::kan, ΔpotB,  Kan
R
, Sm

R
 This study 

AK404 PW357  nspC::kan, ΔpotC,  Kan
R
, Sm

R
 This study 

AK429 PW357 ΔpotA, Sm
R
 Villa and Karatan 

(unpublished) 

AK437 PW357  ΔpotB,  Sm
R 

w/ pBS3 This study 

AK446 PW357  nspC::kan, ΔpotB, Kan
R
, Sm

R
 w/ pBS3 This study 

AK461 PW357  ΔpotC,  Sm
R 

w/ pBS4 This study 

AK464 PW357  nspC::kan, ΔpotC, Kan
R
, Sm

R
 w/pBS4 This study 
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deletions of potD1 and potD2 (Mcginnis et al., 2009).  Briefly, fragments containing 

approximately 400 bp upstream and downstream of the potB and potC genes were 

amplified by PCR from V. cholerae chromosomal DNA using Phusion polymerase (Fig. 

8).  In order to fuse the two fragments using splicing by overlap extension PCR, internal 

primers were engineered with complementary sequences allowing for the generation of a 

recombinant molecule ultimately lacking the gene of interest.  Once these fragments were 

denatured, mixed and reannelaed, the 3’-end of the top strand of one fragment annealed 

onto the 3’-end of the bottom strand of the other fragment, which facilitated an overlap 

that generated the recombinant product (Horton et al., 1990).  Splicing of these fragments 

produced in-frame deletions that removed 791 bp of the 861 bp potB gene and 753 bp of 

the 790 bp potC gene.   

 

Table 2. Plasmids 

 

 

 

 

 

Plasmids Genotype Reference/source 

pCR2.1-

TOPO 

plasmid for TOPO cloning, Ap
R
 Invitrogen 

pWM91 oriR6k, lacAα, sacB, homologous recombination plasmid, Ap
R
 (Metcalf et al., 

1996) 
pACYC184 cloning plasmid, low copy, Tet

R
 New England 

Biolabs 

pBS1 pWM91 carrying an internal in-frame deletion of potB This study  

pBS2 pWM91 carrying an internal in-frame deletion of potC This study 

pBS3 pACYC184::potB V5
 

This study 

pBS4 pACYC184::potC V5
 

This study 
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Table 3. Primers 

 

 

Primer Description Sequence 

Construction of V. cholerae potB deletion 

PA84 Forward primer for upstream fragment 5’-

CGAAATCAACGTCTTCCAA

GC-3’ 

PA85 Reverse primer for upstream fragment  5’-

TTACGAGCGGCCGCACATC

ATTGAGGACTACCTCCC-3’ 

PA86 Forward primer for the downstream fragment  5’-

TGCGGCCGCTCGTAAGTGG

AGCTAGACTAATGGGAC-3’ 

PA87 Reverse primer for the downstream fragment  5’-

GAGTGAAGAAGCCCAGTT

TCG-3’ 

Construction of V. cholerae potC deletion 

PA88 Forward primer for upstream fragment 5-

CCATTTATGATCCTTCCGC

TC-3’ 

PA89 Reverse primer for downstream fragment  5’-

TTACGAGCGGCCGCATCCC

ATTAGTCTAGCTCCAC-3’ 

PA90 Forward primer for the downstream fragment  5’-

TGCGGCCGCTCGTAAGTCG

CTTCACAGTTGTTAGCAAG

-3’ 

PA91 Reverse primer for the downstream fragment  5’-

TGXXACGAAGTAGGTAGA

AGG-3’ 

Cloning potB into pACYC184 plasmid for complementation 

PA247 Forward primer for potB gene
 

5’-

CGTCACTTGGGTTGAAAGC

T-3’ 

PA248 Reverse primer for potB gene with a V5 tag
 

5’-

CCATGGCTACGTAGAATCG

AGACCGAGGAGAGGGTTA

GGGATAGGCTTACCGCCG

CTGCCGCTGCCATCGTTCA

CTTTTAGCTTTTGG-3’ 

Cloning potC into pACYC184 plasmid for complementation 

PA249 Forward primer for potC gene 5’-

GCCATGGCGATCATGCTGT

AC-3’ 

PA250 Reverse primer for potC gene with a V5 tag 5’-

CCATGGCTACGTAGAATCG

AGACCGAGGAGAGGGTTA

GGGATAGGCTTACCGCCG

CTGCCGCTGCCCTTCACTT

TTTCTCTTGCTAAC-3’ 
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  After purification of PCR products, adenines were added to the 3’ ends of the 

blunt ended fragments for TA cloning.  Following manufacturer’s instructions, 10 μL of 

PCR product was mixed with 33.5 μL of water, 5 μL OneTaq polymerase buffer, 1 μL 

dATP, and 0.5 μL OneTaq polymerase and incubated at 72°C for 10 minutes.  This PCR 

product with adenines on 3’ends was then used to clone into a linearized pCR2.1-TOPO 

vector with single thymine overhangs following instructions from manufacturer 

(Invitrogen, Carlsbad, CA) and electroporated into electrocompetent DH5α using a BIO-

RAD MicroPulser (Hercules, CA) at 1.8 kV.  These transformed cells were incubated in 

SOC medium to recover at 37 °C at 200 rpm for 1 hour, and then plated on LB-ampicillin 

(100 μg/mL) agar plates with 20 μL of X-gal (20 mg/mL in dimethyl sulfoxide). 

  Blue white screening was used to select for plasmids carrying the insert and 

colony PCR was used to confirm presence of insert. Briefly, single colonies were 

resuspened in 100 μL of water and heated at 95°C for 5 minutes to lyse the cells. Two μL 

of this lysate containing the template DNA were used in a PCR reaction with 16.4 μL of 

water, 5 μL 5X OneTaq Standard Reaction Buffer, 0.5 μL dNTPS, 0.5 μL of each outside 

primer, and 0.125 μL OneTaq DNA polymerase. Cycling conditions were as follows: 

initial denaturation at 98°C for 30 seconds, 35 cycles of 98°C for 10 seconds, 56°C for 20 

seconds, 68°C for 60 seconds, and a final extension at 72°C for 6 minutes. Colonies 

testing positive for insert were grown overnight.  Next, the plasmids were purified using 

the Promega Wizard Plus SV Minipreps DNA Purification System (Madison, WI) and 

sent out for sequencing. 
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Fig. 8. Construction of the pBS1 and pBS2 plasmid containing a deletion of one of 

the transmembrane permeases of the polyamine transport system PotABCD1.  (A) 

The pBS1 plasmid was used to delete the potB gene encoding one of the channel forming 

proteins (B) The pBS2 plasmid was used to delete the potC gene encoding for one of the 

other channel forming proteins of the polyamine transporter in V. cholerae.  

  

 Sequences were verified by services provided by Cornell University (Ithaca, NY).  

The ΔpotB insert was then excised using XhoI and SpeI, while the ΔpotC insert was 

excised using ApaI and SpeI.  These were then purified using the GE Healthcare 

Illustra™ GFX™ PCR DNA and Gel Band Purification Kit (Buckinghamshire, UK).  

pCR2.1 pWM91  

potC 

PA 88 

PA 91 PA 89 

PA 90 

TGCGGCCGCTCGTAA 
ACGCCGGCGAGCATT 

ΔpotC ΔpotC 

pBS2 

A. 

pCR2.1 pWM91  

potB 

PA 84 

PA 87 PA 85 

PA 86 

TGCGGCCGCTCGTAA 

ACGCCGGCGAGCATT 

ΔpotB ΔpotB 

pBS1 

B. 



 19 

Next the inserts were ligated into the pWM91 plasmid linearized with the same enzymes, 

electroporated into electrocompetent DH5αλpir E. coli using a BIO-RAD MicroPulser 

(Hercules, CA) at 1.8 kV, and verified using colony PCR.  Colonies testing positive for 

insert were grown overnight.  Next, the plasmids were purified using the Promega 

Wizard Plus SV Minipreps DNA Purification System (Madison, WI) and electroportated 

into electrocompetent SM10λpir E. coli using a BIO-RAD MicroPulser (Hercules, CA) at 

1.8 kV, and verified using colony PCR.   

 These strains were used for conjugation into V. cholerae PW357 and a V. 

cholerae PW357 nspC::kan mutant using SacB counter selectable mutagenesis (Metcalf 

et al., 1996). PW357 is a V. cholerae O139 MO10 strain with a fusion of the vpsL 

promoter to the lacZ gene (Haugo & Watnick, 2002).  Fresh plates for the recipient V. 

cholerae and donor SM10λpir E. coli containing the plasmid pWM91::ΔpotB or 

pWM91::ΔpotC were streaked on LB plates containing streptomycin (100 μg/mL) and 

ampicillin (100 μg/mL), respectively, and incubated overnight at 37°C. The next day, 

either of the E. coli strains was mixed with the recipient V. cholerae PW357 strain or the 

PW357 nspC::kan mutant on LB agar plates and incubated at 37°C overnight.  For 

conjugating into the V. cholerae PW357, half of the growth was streaked for isolation 

onto LB agar plates containing streptomycin (100 μg/mL) and ampicillin (50 μg/mL), 

then incubated overnight at 37°C to select for single crossover events. Four single colony 

isolates were then streaked on LB agar containing streptomycin and ampicillin and 

incubated overnight at 37°C.  Next, four single colony isolates were streaked on non-

selective agar with no antibiotic allowing for a second recombination event to occur 

within the colony removing the ampicillin resistance gene and the sacB gene.  Following 
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overnight incubation, multiple isolated colonies were selected and streaked for isolation 

on sucrose plates and incubated for two days at room temperature.  Sucrose plates were 

made by combining 5 g yeast extract, 10 g tryptone, 15 g tryptone with 667 mL H2O and 

autoclaving the mixture.  After cooling to around 50°C, 333 mL of 30% filter-sterilized 

sucrose solution was added.  Colonies were patched on LB agar containing either 

ampicillin (50 μg/mL) or streptomycin (100 μg/mL) to screen for streptomycin resistance 

and ampicillin sensitivity to confirm successful homologous recombination within V. 

cholerae PW357 strain.  Colonies positive for the ΔpotB insert were verified by colony 

PCR described above using primers PA84 and PA87.  Colonies positive for the ΔpotC 

insert were verified by colony PCR using primers PA88 and PA91.   

 For conjugating into V. cholerae PW357 nspC::kan mutant, half of the growth 

was streaked for isolation onto LB agar plates containing streptomycin (100 μg/mL), 

ampicillin (50 μg/mL), and kanamycin (30 μg/mL).  Four single colony isolates were 

then streaked on LB agar containing streptomycin, ampicillin, and kanamycin and 

incubated overnight at 37°C.  Next, four single colony isolates were streaked on non-

selective agar with no antibiotic allowing for a second recombination event to occur 

within the colony removing the ampicillin resistance gene and the sacB gene.  Following 

overnight incubation, multiple isolated colonies were selected and streaked for isolation 

on sucrose plates, which contained kanamycin (30 μg/mL), and incubated for two days at 

room temperature.  Isolated colonies were then patched on LB agar containing either 

ampicillin (50 μg/mL) or streptomycin (100 μg/mL) plus kanamycin (30 μg/mL) to 

screen for streptomycin and kanamycin resistance and ampicillin sensitivity to confirm 

successful homologous recombination.  Colonies positive for the ΔpotB insert were 
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verified by colony PCR using primers PA84 and PA87.  Colonies positive for the ΔpotC 

insert were verified by colony PCR using primers PA88 and PA91.   

Complementation of pot mutants 

 To further validate and confirm the role of the transmembrane permeases of the 

putative ABC-type transporter PotABCD1, the pot mutants were complemented with 

plasmids carrying each of these genes (Fig. 9, 10).  Primers were used to amplify the 

entire potB and potC genes.  Forward primers annealed to a region 20 basepairs upstream 

of the predicted ribosome binding site of each gene and the reverse primers annealed to a 

region 22 basepairs upstream of the stop codon.  The reverse primers also encoded a V5 

epitope tag to be engineered upstream of the potB and potC annealing regions, because of 

this the stop codon was not encoded in the primers.  Furthermore, the reverse primer 

PA250 contained an NcoI restriction enzyme site to facilitate cloning of the potC gene 

into the V. cholerae compatible pACYC184 plasmid used for complementation.   

 For complementation of potB, cycling conditions for PCR were as follows: initial 

denaturation at 98°C for 30 seconds, 30 cycles of denaturation at 98°C for 10 seconds, 

annealing at 55°C for 20 seconds, extension at 72°C for 60 seconds, and a final extension 

at 72°C for 6 minutes.  For complementation of potC cycling conditions for PCR 

consisted of an initial denaturation at 94°C for 30 seconds, 30 cycles of denaturation at 

94°C for 10 seconds, annealing at 60°C for 15 seconds, extension at 72°C for 30 seconds, 

and a final extension at 72°C for 6 minutes.  The PCR products were separated on a 1% 

agarose gel and correct size products were excised and purified using the GE Healthcare 

Illustra™ GFX™ PCR DNA and Gel Band Purification Kit (Buckinghamshire, UK).   
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Fig. 9. Construction of the pBS3 plasmid carrying the potB gene for complementing 

deletion mutants.  The pBS3 plasmid was used to complement the V. cholerae ΔpotB 

and nspC::kan, ΔpotB double mutant strain to further confirm role of transmembrane 

permease.   

  

 After adding adenines, these products were cloned in to a pCR2.1-TOPO vector 

following instructions from manufacturer (Invitrogen, Carlsbad, CA) and electroporated 

into electrocompetent DH5α using a BIO-RAD MicroPulser (Hercules, CA) at 1.8 kV.  

These transformed cells were incubated in SOC medium to recover at 37°C at 200 rpm, 

and then plated on LB-ampicillin (100 μg/mL) with 20μL of X-gal (20 mg/mL in 

dimethyl sulfoxide).  Blue white screening was used to select for plasmids carrying the 
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insert and colony PCR, as described previously, was used to confirm if insert was 

present. Colonies testing positive for insert were grown overnight.  The next day, the 

plasmids were purified using the Promega Wizard Plus SV Minipreps DNA Purification 

System (Madison, WI) and sent out for sequencing.  Sequence was verified by services 

provided by Cornell University (Ithaca, NY). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Construction of the pBS4 plasmid carrying the potC gene for 

complementing deletion mutants.  The pBS3 plasmid was used to complement the V. 

cholerae ΔpotC and nspC::kan, ΔpotC double mutant strain to further confirm role of 

transmembrane permease.   

  

 The potB-V5 insert was excised from the pCR2.1 vector using EcoRI, while the 

potC-V5 insert was excised using NcoI.  Next, these were purified using the GE 

Healthcare Illustra™ GFX™ PCR DNA and Gel Band Purification Kit 
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(Buckinghamshire, UK). The inserts were then ligated into the medium copy pACYC184 

plasmid linearized with the same enzyme, and transformed into DH5α. Alkaline 

phosphatase, Calf intestinal, purchased from New England Biolabs (Beverly, MA) was 

used to catalyze the dephosphorylation of the 5’ and 3’ ends of the pACYC184 plasmid 

to prevent recircularization of plasmid during ligation.  These colonies were screened for 

the insert using colony PCR, as previously described, and colonies testing positive for 

insert were grown overnight.  Next, the pBS3 plasmid was purified using the Promega 

Wizard Plus SV Minipreps DNA Purification System (Madison, WI) and transformed 

into a V. cholerae ΔpotB mutant strain, as well as nspC::kan, ΔpotB double mutant strain.  

The pBS4 plasmid was purified and transformed into a V. cholerae ΔpotC mutant strain, 

as well as nspC::kan, ΔpotC.   

Western Blotting to confirm the presence of PotB and PotC proteins 

 Cells were grown overnight in Luria-Bertani broth (LB) (1% Tryptone, 0.5% 

yeast extract, 85 mM NaCl), pelleted, resuspended in 1X phosphate-buffered saline 

(PBS) (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 2 mM KH2PO4, pH 7.4), 

lysed using sonication, and then centrifuged for 3 min at 16,000 X g.  The supernatant 

was removed and diluted 1:1 with 1X Laemmli sample buffer containing β-

Mercaptoethanol and placed in a hot water bath at 65°C for 10 minutes.  Seventeen μL of 

sample was then loaded on a polyacrylamide denaturing gel with a 12% acrylamide 

resolving gel and 5% stacking gel and ran at 150V for 1 hour and 15 minutes.  The gel 

and blotting paper were equilibrated in 1X Transfer Buffer containing 50 mM TRIS, 40 

mM Glycine, 1.5 mM SDS, and 20% Methanol.  A PVDF membrane was briefly 

immersed in 100% methanol and then incubated in 1X Transfer Buffer.  The gel was 
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transferred to the membrane using a BIO-RAD Mini Trans-Blot (Hercules, CA) for 60 

min at 100V.  The membrane was then blocked overnight with 5% skim milk in 1X PBS 

(137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 2 mM KH2PO4, pH 7.4) at 4°C.  

The next day, the membrane was washed three times in PBS with 0.05% Tween 20 and 

then incubated with a monoclonal V5 antibody conjugated to horseradish peroxidase 

(AbD Serotec, Raleigh, NC), diluted 1:20,000 in PBS containing 3% skim milk, for 1 

hour at room temperature.  After incubating, the membrane was washed again three times 

in PBS with 0.05% Tween 20.  Next, the membrane was incubated with SuperSignal 

West Pico Chemiluminescent Substrate (Thermo Scientific, Rockford, IL) for 5 minutes, 

then imaged using a BIO-RAD Molecular Imager
®
 Gel Doc

™
 XR System (Hercules, 

CA).     

Polyamine extraction 

 To define the role of PotB and PotC in the uptake of norspermidine and 

spermidine, polyamines were extracted as previously described (Mcginnis et al., 2009; 

Morgan, 1998; Parker et al., 2012).  Tryptone media was used due to LB medium 

containing approximately 15 μM spermidine and reports showing that polyamines 

extracted from V. cholerae grown in minimal media contain only putrescine, 

diaminopropane, cadaverine, and norspermidine (Lee et al., 2009). All strains were 

grown at 27°C to mid-log phase, pelleted, washed with 1X PBS (137 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4, and 2 mM KH2PO4, pH 7.4), and resuspended in water at 10 μL 

per mg wet cell weight.  Cells were lysed using sonication, and debris removed by 

centrifugation.  Cellular proteins and DNA were precipitated by a 50% tricholoracetic 

acid solution (TCA) and centrifuged, leaving the supernatant containing the polyamines. 
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The supernatant was removed and then benzoylated.  In order to clarify the binding 

preference of the substrate binding protein, PotD1, polyamines were added to the media 

in varying concentrations and cell extracts were analyzed.   

 

Benzoylation 

 Benzoylation was performed as described previously (Mcginnis et al., 2009; 

Morgan, 1998; Parker et al., 2012).  Samples were extracted by 1mL of chloroform 

twice, evaporated to dryness, and dissolved in 100 μL mobile phase used for HPLC (60% 

methanol/40% water).  Along with the benzoylation of the polyamine extractions, a 

standard mix containing 0.1 mM of each polyamine was prepared each time.   

HPLC analysis  

 High performance liquid chromatography employed a Waters 1525 Binary Pump 

with a 2487 Dual Wavelength Absorbance Detector set at 254 nm and a Phenomenex 

Spherclone 5u ODS column (5 μm, 250 X 4.6 mm) that was fitted with a 4.0 X 30 mm 

guard cartridge (Phenomenex, Torrance, CA).  The sample runs were implemented using 

a gradient of 45-60% methanol in water for 30 minutes, with a 10-minute isocratic 

equilibration of 45% methanol in water.  For other sample runs another method was 

executed using a gradient of 45-60% methanol in water for 45 minutes, with a 10-minute 

isocratic equilibration of 45% methanol in water.  For each run, 40 μL of each sample 

was injected.  

Biofilm assays 

 

 Biofilm assays were performed as previously described (Karatan et al., 2005) in 

triplicate and repeated several times to ensure reproducibility. Cells were scraped from 
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LB agar plates and resuspended in 300 μl of tryptone broth.  This culture was then diluted 

1:10 into fresh medium and the optical cell density was measured at 655 nm to calculate 

volume of inoculum for preparation of biofilm.  Borosilicate tubes were filled with 300 μl 

of tryptone broth and inoculated with the strains of interest to yield an OD of 0.04.  

Cultures were grown at 27°C for 24 hours, planktonic cells were removed, and remaining 

biofilm was washed with 1X PBS.  Glass beads were used to vortex and homogenize 

biofilm and a microplate reader (Bio-Rad, Hercules, CA) was used to quantify optical 

cell density of planktonic and biofilm cells at 655 nm.  
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Results 

 

Construction of the ΔpotB and ΔpotC single mutants  

 

 To study the role of the transmembrane permeases of the ABC-type transporter, 

PotABCD2D1, I first constructed a single deletion mutant strain of each gene. A region 

approximately 400 bp upstream and downstream of the potB gene was amplified using 

primers PA84, PA85, PA86, and PA87. Primers PA84 and PA85 were used in a PCR 

reaction to generate the upstream fragment while primers PA86 and PA87 were used in a 

separate PCR reaction to construct the downstream fragment.  

  

 

 

 

 

 

 

Fig. 11. Confirmation of successful splicing of ΔpotB upstream and downstream 

fragments.  This image represents the fused product of both upstream and downstream 

fragments in a PCR reaction using primers PA84 and PA87.  Lane 1 represents the NEB 

2-log ladder and lane 2 is the 791 bp spliced product, which was further purified and used 

for TA cloning. 

 

 In order to fuse the two fragments using splicing by overlap extension (SOE) 

PCR, primers PA85 and PA86 were engineered with complementary SOE tags.  The 

upstream and downstream fragments were spliced together in another PCR reaction using 

primers PA84 and PA87 to form a recombinant molecule ultimately removing 791 bp of 

the 861 bp potB gene.  Gel electrophoresis was used to assess the splicing of the two 
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fragments.  Presence of an approximately 800 bp product confirmed that the two 

fragments were successfully spliced together (Fig. 11).   

 After purification of the PCR products, adenines were added to the 3’ ends of the 

blunt ended fragments. The insert was then cloned into a pCR2.1 TOPO plasmid, the 

construct was electroporated into E. coli DH5α, and eight colonies were tested to detect 

the presence of the insert by using colony PCR (Fig. 12).  Only one individual colony 

contained the insert.  This plasmid was isolated and the sequence was verified.  The 

plasmid pCR2.1::ΔpotB was digested with XhoI and SpeI to release the insert, the 

reaction was ran on an agarose gel, and the insert was excised and gel-purified (Fig. 13).  

The insert was then ligated into a linearized pWM91 plasmid and electroporated into E. 

coli DH5αλpir.  The plasmid containing the insert was verified by colony PCR of E. coli 

DH5αλpir, purified, and then electroporated into E. coli SM10λpir.  

 This strain was used for conjugation into V. cholerae using homologous 

recombination as described in the methods.  The streptomycin resistant and ampicillin 

sensitive colonies were screened by colony PCR to confirm the presence of the ΔpotB 

insert (Fig. 14).  When observed on an agarose gel, two individual colonies were shown 

to contain the insert, due to the presence of a band around 800 bp indicative of the 791 bp 

spliced product of the ΔpotB insert.   
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Fig. 12. Confirmation of the ΔpotB insert in pCR2.1 . Eight isolated colonies were 

chosen and colony PCR was performed using primers PA84 and PA87 to verify presence 

of insert.  SM (size marker): NEB 2-log DNA ladder; lane 1: colony 1; lane 2: colony 2; 

lane 2: colony 3; lane 4: colony 4; lane 5: colony 5; lane 6: colony 6; lane 7: colony 7; 

lane 8: colony 8. Colony 8 indicates the correct sized product around 791 bp and was 

chosen for further cloning procedures.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Gel electrophoresis of digested pCR2.1:: ΔpotB. In order to ligate this insert 

into pWM91, pCR2.1:: ΔpotB was digested with XhoI and SpeI and ran on 1% agarose 

gel. Lane 1 contains the NEB 2-log DNA ladder, lanes 2 and 3 contain the cut pCR2.1 

plasmid containing the insert.   
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Fig. 14. Colony PCR depicting successful homologous recombination which 

confirms presence of ΔpotB insert in Vibrio cholerae PW357.  Nine ampicillin 

sensitive and streptomycin resistant colonies were screened using colony PCR.  Primers 

PA84 and 87 were used to verify presence of the ΔpotB insert.  SM (size marker): NEB 

2-log ladder; lane 1: colony 1; lane 2: colony 2; lane 3: colony 3; lane 4: colony 4; lane 5: 

colony 5; lane 6: colony 6; lane 7: colony 7; lane 8: colony 8; lane 9: colony 9.  Colonies 

7 and 9 indicate successful homologous recombination due to presence of an 800bp band 

indicative of the ΔpotB insert.       

 

 This entire process was repeated for the construction of the potC mutant.  A 

region approximately 400 bp upstream and downstream of the potC gene was amplified 

using primers PA88, PA89, PA90, and PA91.  Primers PA88 and PA89 were used in a 

PCR reaction to generate the upstream fragment while primers PA90 and PA91 were 

used in a separate PCR reaction to construct the downstream fragment. In order to fuse 

the two fragments using splicing by overlap extension (SOE) PCR, primers PA89 and 

PA90 were engineered with complementary SOE tags.  The upstream and downstream 

fragments were spliced together in another PCR reaction using primers PA84 and PA87 

to form a recombinant molecule ultimately removing 753 bp of the 790 bp potC gene.  

Gel electrophoresis was used to confirm the splicing of the two fragments (Fig. 15).  

Presence of an approximately 800-bp product confirmed that the two fragments were 

successfully spliced together.     
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Fig. 15. Confirmation of successful splicing of ΔpotC upstream and downstream 

fragments.  This image represents the fused SOE product of both upstream and 

downstream fragments in a PCR reaction using primers PA88 and PA91.  Lane 1 

represents the NEB 2-log ladder and lane 3 is the 753 bp spliced product, which was 

further purified and used for TA cloning.  

 

 After purification of the PCR products, adenines were added to the 3’ ends of the 

blunt ended fragments. The insert was then cloned into a pCR2.1 TOPO plasmid, the 

construct was electroporated into E. coli DH5α, and nineteen colonies were tested to 

detect the presence of the insert by using colony PCR (Fig. 16).  Five colonies were 

found to contain the insert indicated by the band around 800 bp.  This plasmid was 

isolated and the sequence was verified.  The plasmid pCR2.1::ΔpotC was digested with 

ApaI and SpeI to release the insert, the reaction was ran on an agarose gel, and the insert 

was cut out and gel-purified (Fig. 17).  The insert was then ligated into a linearized 

pWM91 plasmid, and electroporated into E. coli DH5αλpir.    The plasmid containing the 

insert was verified by colony PCR of E. coli DH5αλpir, purified, and then electroporated 

into E. coli SM10λpir.  This strain was used for conjugation into V. cholerae, PW357, 

using homologous recombination as described in the methods.  The streptomycin 

resistant and ampicillin sensitive colonies were screened by colony PCR to confirm the 

presence of the ΔpotC insert (Fig. 18). When observed on an agarose gel, two individual 
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colonies were shown to contain the insert, due to the presence of a band around 800 bp 

indicative of the spliced product of the ΔpotC insert.   

 

 

 

Fig. 16. Confirmation of the ΔpotC insert in pCR2.1. Nineteen isolated colonies were 

chosen and colony PCR was performed using primers PA88 and PA91 to verify presence 

of insert.  SM (size marker): NEB 2-log DNA ladder; lanes 1-19: colonies 1-19. Colonies 

8, 13, 14, 15, and 18 indicates the correct sized product around 753 bp.   

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 17. Gel electrophoresis of digested pCR2.1:: ΔpotC.  In order to ligate this insert 

into pWM91, pCR2.1:: ΔpotC was digested with ApaI and SpeI and ran on a 1% agarose 

gel. Lane 1 contains the NEB 2-log DNA ladder, lanes 3-6 contain the cut pCR2.1 

plasmid containing the insert.   
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Fig. 18. Confirmation of  presence of ΔpotC insert in Vibrio cholerae PW357.  Nine 

ampicillin sensitive and streptomycin resistant colonies were screened using colony PCR.  

Primers PA88 and 91 were used to verify presence of the ΔpotC insert. SM (size marker): 

NEB 2-log ladder; lane 1: colony 1; lane 2: colony 2; lane 3: colony 3; lane 4: colony 4; 

lane 5: colony 5; lane 6: colony 6; lane 7: colony 7; lane 8: colony 8; lane 9: colony 9.  

Colonies 2 and 9 indicate successful homologous recombination due to presence of an 

800 bp band indicative of the ΔpotC insert. 

 

Construction of nspC::kan ΔpotB and of nspC::kan ΔpotC double mutants 

 Because V. cholerae can synthesize norspermidine, a strain unable to synthesize 

or transport this molecule needed to be constructed in order to assess norspermidine 

import. A double mutant was generated by SacB counter selectable mutagenesis as 

previously described in materials and methods. V. cholerae PW357 nspC::kan mutant 

strain was used for the recipient, while SM10 λpir E. coli containing the plasmid 

pWM91::ΔpotB or pWM91::ΔpotC were used for the donor.  The streptomycin, 

kanamycin resistant and ampicillin sensitive colonies were screened by colony PCR to 

confirm the presence of the ΔpotB insert and ΔpotC insert.  Nine colonies were tested to 

detect the presence of the ΔpotB insert in the nspC::kan background by using colony 
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PCR (Fig. 19).  When ran on an agarose gel, two of the nine colonies screened contained 

the 800 bp insert (Fig. 19).  Eight colonies were chosen and tested to detect the presence 

of the ΔpotC insert in the nspC::kan background by using colony PCR (Fig. 20).  When 

these reactions were ran on an agarose gel, three individual colonies were shown to 

contain the insert indicated by the band around 800 bp (Fig. 20).   

 

 

 

 

 

 

 

 

 

Fig. 19. Confirmation of presence of ΔpotB insert in V. cholerae nspC::kan ΔpotB. 

Nine ampicillin sensitive and streptomycin, kanamycin resistant colonies were screened 

using colony PCR.  Primers PA84 and PA87 were used to verify presence of the ΔpotB 

insert. SM (size marker): NEB 2-log ladder; lane 1: colony 1; lane 2: colony 2; lane 3: 

colony 3; lane 4: colony 4; lane 5: colony 5; lane 6: colony 6; lane 7: colony 7; lane 8: 

colony 8; lane 9: colony 9.   Colonies 2 and 8 indicate successful homologous 

recombination due to presence of an 800 bp band indicative of the ΔpotB insert. 

 

 

 

 

 

 

 

 

 

Fig. 20. Confirmation of presence of ΔpotC insert in V. cholerae nspC::kan ΔpotC. 

Eight ampicillin sensitive and streptomycin, kanamycin resistant colonies were screened 

using colony PCR.  Primers PA88 and PA91 were used to verify presence of the ΔpotB 

insert.  SM (size marker): NEB 2-log ladder; lane 1: colony 1; lane 2: colony 2; lane 3: 

colony 3; lane 4: colony 4; lane 5: colony 5; lane 6: colony 6; lane 7: colony 7; lane 8: 

colony 8.  Colonies 5, 7, and 8 indicate successful homologous recombination due to 

presence of an 800 bp band indicative of the ΔpotC insert. 
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Construction of the complementation plasmid carrying the potB gene 

 The pot mutants were complemented with plasmids carrying each of the genes in 

order to further validate the role of the transmembrane permeases of the transport system.  

To complement the potB mutant, the entire potB gene was amplified using primers, 

PA247 and 248, to yield a 953 bp PCR product (Fig. 21). Gel electrophoresis was used to 

confirm the amplification of the potB gene.  Presence of an approximately 1000-bp 

product confirmed that the potB gene was amplified.   After purification of the PCR 

products, adenines were added to the 3’ ends of the blunt ended fragments and the insert 

was cloned into a pCR2.1 TOPO plasmid, the construct was electroporated into E. coli 

DH5α, and nine colonies were tested to detect the presence of the insert by using colony 

PCR (Fig. 22).  Seven colonies were found to contain the insert indicated by the band 

around 1000 bp (Fig. 22).   

 

 

 

 

 

 

 

 

 

 

Fig. 21. Gel electrophoresis of potB-V5 PCR product.  The entire potB gene was 

amplified using primers PA247 and 248.  Lane 1 is the 2-log ladder.  Lane 3 contains the 

953 bp PCR product, which was used for TA cloning.    
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Fig. 22. Confirmation of the potB-V5 insert in pCR2.1. Nine isolated colonies were 

chosen and colony PCR was performed using primers PA247 and PA248 to verify 

presence of insert. SM (size marker): NEB 2-log ladder; lane 1: colony 1; lane 2: colony 

2; lane 3: colony 3; lane 4: colony 4; lane 5: colony 5; lane 6: colony 6; lane 7: colony 7; 

lane 8: colony 8; lane 9: colony 9.   Colonies 2, 3, 4, 5, 6, 8, and 9 indicate the correct 

sized product around 953 bp.     

 

 Plasmids were isolated from colonies 2, 3, and 4, and correct construction was 

verified by sequencing.  Once the sequence of pCR2.1::potB-V5 was verified, the 

plasmid pCR2.1::potB-V5 was digested with EcoRI to release the insert, the reaction was 

ran on an agarose gel, and the insert was cut out and gel-purified.  The insert was then 

ligated into the pACYC184 plasmid linearized with the same enzyme.  The ligation was 

then transformed into E. coli DH5α and colonies containing the plasmids with the insert 

were verified using colony PCR (Fig. 23).  Three colonies testing positive for insert were 

grown overnight and plasmids were isolated.  The pACYC184::potB-V5 plasmid (pBS3) 

was transformed into both ΔpotB and nspC:kan ΔpotB mutant strains and verified using 

colony PCR (Fig. 24 and 25).  Nine of ten colonies screened contained the 1000 bp potB-

V5 insert in the V. cholerae ΔpotB background (Fig. 24).  All of the colonies screened 

contained the potB-V5 insert in the V. cholerae nspC::kan ΔpotB background (Fig. 25).   
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Fig. 23. Confirmation of the potB-V5 insert in pAYCY184. Eight isolated colonies 

were chosen and colony PCR was performed using primers PA247 and PA248 to verify 

presence of insert.  SM (size marker): NEB 2-log ladder; lane 1: colony 1; lane 2: colony 

2; lane 3: colony 3; lane 4: colony 4; lane 5: colony 5; lane 6: colony 6; lane 7: colony 7; 

lane 8: colony 8.  All colonies indicate the correct sized product around 953 bp, colonies 

2, 3, and 4 were used for further manipulation.      

 

 

 

  

 

 

 

 

 

 

 

Fig. 24.  Confirmation of the plasmid pACYC184::potB-V5 in V. cholerae ΔpotB. 
Ten isolated colonies were chosen and colony PCR was performed using primers PA247 

and PA248 to verify presence of insert.  SM (size marker): NEB 2-log DNA ladder; lanes 

1-10: colonies 1-10. Colonies 1, 2, 3, 4, 5, 6, 8, 9, and 10 indicate the correct sized 

product around 953 bp.    
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Fig. 25.  Confirmation of the plasmid pACYC184::potB-V5 in V. cholerae nspC::kan 

ΔpotB. Seven isolated colonies were chosen and colony PCR was performed using 

primers PA247 and PA248 to verify presence of insert.  Lane 1: NEB 2-log ladder; lane 

2: colony 1; lane 3: colony 2; lane 4: colony 3; lane 5: colony 4; lane 6: colony 5; lane 7: 

colony 6; lane 8: colony 7.  All lanes indicate the correct sized product around 953 bp.    

 

Construction of the complementation plasmid carrying the potC gene 

 To complement the potC mutant, the entire potC gene was amplified using 

primers PA249 and 250 to yield a 905 bp PCR product (Fig. 26). Gel electrophoresis was 

used to assess the amplification of the potC gene.  When ran on the gel the PCR product 

was seen at around 1000 bp, confirming that the potC gene was amplified (Fig. 26).  

Adenines were added to the 3’ ends of the blunt ended fragments and the insert was 

cloned into a pCR2.1 TOPO plasmid, the construct was electroporated into E. coli DH5α, 

and nine colonies were tested to detect the presence of the insert by using colony PCR.  

All nine colonies were found to contain the insert indicated by the band around 1000 bp 

(Fig. 27).   
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Fig. 26. Gel electrophoresis of potC-V5 PCR product.  The entire potC gene was 

amplified using primers PA249 and 250.  Lane 1 is the NEB 2-log DNA ladder.  Lane 2 

contains the 905 bp PCR product, which was used for TA cloning.    

 

 

 

 

 

 

 

Fig. 27. Confirmation of the potC-V5 insert in pCR2.1 . Nine isolated colonies were 

chosen and colony PCR was performed using primers PA249 and PA250 to verify 

presence of insert.  SM (size marker): NEB 2-log ladder; lane 1: colony 1; lane 2: colony 

2; lane 3: colony 3; lane 4: colony 4; lane 5: colony 5; lane 6: colony 6; lane 7: colony 7; 

lane 8: colony 8; lane 9: colony 9.  All lanes indicate the correct sized product around 953 

bp.    

 

 Plasmids were isolated from colonies 1, 2, and 3, and the correct construction was 

verified by sequencing.  Once the sequence was verified, the plasmid pCR2.1::potC-V5 

was digested with NcoI to release the insert, the reaction was ran on an agarose gel, and 

the insert was cut out and gel-purified.  The insert was then ligated into a linearized 
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pACYC184 plasmid with the same enzyme.  This was then transformed into E. coli 

DH5α and colonies containing the insert were verified using colony PCR (Fig. 28).  

Colonies testing positive for insert were grown overnight and plasmids were isolated.  

The pACYC184::potC-V5 plasmid (pBS4) was transformed into both ΔpotC and 

nspC:kan ΔpotC mutant strains and verified using colony PCR (Fig. 29).  All nine 

colonies screened contained the 1000 bp potC-V5 insert in the V. cholerae ΔpotC 

background (Fig. 29).  Four of the nine colonies screened contained the potC-V5 insert in 

the V. cholerae nspC::kan ΔpotC background (Fig. 29).   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 28. Confirmation of the potC-V5 insert in pAYCY184. Nine isolated colonies 

were chosen and colony PCR was performed using primers PA249 and PA250 to verify 

presence of insert.  SM (size marker): NEB 2-log DNA ladder; lanes 1-9: colonies 1-9. 

All colonies indicate the correct sized product around 905 bp, colonies 1, 2, and 3 were 

used for further manipulation.      
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Fig. 29.  Colony PCR confirming pACYC184::potC-V5 in V. cholerae ΔpotC and 

nspC:kan ΔpotC mutant strains. Lane 1 contains 2-log DNA ladder, while lanes 3-11 

contain the correct sized band indicative of potC-V5 insert in PW357 ΔpotC mutant 

strain. Lanes 12, 13, 18, and 20 represent single colonies that contain potC-V5 insert in 

nspC:kan ΔpotC double mutant strain.   

 

Confirmation of the presence of PotB and PotC proteins   

 To confirm the presence of the Pot proteins in each complemented mutant strain, 

a Western blot was performed as described in materials and methods.  In a separate 

experiment, nspC::kan ΔpotD1 complemented with a plasmid containing the potD1-V5 

construct was used as a positive control to detect the V5 epitope tag, while nspC::kan 

with an empty pACYC184 vector was used as a negative control.  In analyzing the blot, 

the PotD1 protein can be visualized in lane 3 around 40 kDa (Fig. 30).  A smaller band 

lower than 40 kDa was present in the Western blot.  Lower molecular weight bands are 

usually indicative of degradation of target proteins. There was no band observed in the 

negative control as expected (Fig. 30). To confirm the presence of PotB and PotC in the 

complemented mutants that were constructed, a Western blot was performed and 

analyzed.  Bands were detected around 31 kDa for PotB and 28 kDa for PotC (Fig 31).  

This verified that the complemented mutants with the plasmid carrying the entire gene 

express the V5 tagged PotB and PotC proteins.   
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Fig. 30.  Western Blot analysis showing expression of PotD1 complement mutants.  

Equal concentration of whole cell lysates were separated by SDS-PAGE, blotted, and 

reacted with V5-antibody.  Mutants were detected using the V5 epitope tag.  Lane 1: New 

England Biolabs Color Plus Protein Standard, Broad Range; Lane 2: nspC::kan with 

empty pACYC184 vector; Lane 3: nspC::kan ΔpotD1 with potD1-V5, size of PotD1 

protein is 40 kDa.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31.  Western Blot analysis showing expression of PotB and PotC complement 

mutants.  Equal concentration of whole cell lysates were separated by SDS-PAGE, 

blotted, and reacted with V5-antibody.  Mutants were detected using the V5 epitope tag.  

Lane 1: New England Biolabs Color Plus Protein Standard, Broad Range; Lane 2: 

nspC::kan ΔpotB with potB-V5, size of PotB protein is 31 kDa; Lane 3: nspC::kan 

ΔpotC with potC-V5, size of PotC protein is 28 kDa.  ExPASy (http://www.expasy.org/) 

was used to compute molecular weight of PotB and PotC proteins.   
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PotB and PotC facilitate the import of spermidine  

 Previous research in our lab has reported that PotD1 in V. cholerae, the presumed 

substrate binding protein of the putative ABC-type transporter, PotABCD1 was 

responsible for both norspermidine and spermidine uptake (Cockerell et al., 2014; 

Mcginnis et al., 2009).  In this work, we further characterize this putative transport 

system and analyze the role of the other components of this system, specifically the 

transmembrane permeases of this system, PotB and PotC.  To determine if PotB and PotC 

are responsible for transporting spermidine into the cell, I constructed mutant strains 

lacking potB or potC and analyzed the intracellular polyamine content.  Polyamines were 

extracted, derivatized by benzoylation, and analyzed by HPLC as described in materials 

and methods.  A standard mix containing 0.1 mM of each polyamine was prepared each 

time in order to determine the identity of the polyamines.  The standard mix included 

putrescine (Put), diaminopropane (Dap), cadaverine (Cad), norspermidine (Nspd), and 

spermidine (Spd) (Fig. 32A).   

 The V. cholerae wild-type cellular polyamine profile showed all five of the 

polyamines in the standard mix (Fig. 32B).  The biosynthetic pathways for putrescine, 

cadaverine, diaminopropane, and norspermidine have been detected in V. cholerae (Lee 

et al., 2009; Mcginnis et al., 2009; Merrell & Camilli, 1999).  However, V. cholerae 

lacks the genes encoding enzymes responsible for spermidine synthesis (Tabor et al., 

1986).  Under the conditions of our experiment, V. cholerae is unable to synthesize 

spermidine, so any spermidine that is observed in the chromatograms is imported from 

the media.  Polyamine levels in the tryptone medium used in our experiments have been 

determined.  This media contains on average approximately 3.6 μM spermidine (data not 
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shown).  The ΔpotB and ΔpotC mutants contained all of the polyamines in the standard 

except for spermidine (Fig. 32C and 32D), indicated by the absence of the peak around 

25 min.  These results were similar to previous research in our lab on the substrate 

binding protein PotD1 (Mcginnis et al., 2009).  This data suggests that the 

transmembrane permeases, PotB and PotC, the transmembrane permeases, are required 

for spermidine transport into the cell.   
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Fig. 32. Polyamine composition of the pot single deletion mutants. Cellular 

polyamines were extracted, derivatized by benzoylation, and analyzed by HPLC as 

previously described in Materials and methods.  For clarity, only data obtained between 

12 and 26 min of a 40 min run are plotted.   A. HPLC chromatogram depicting the 

retention times of each polyamine; peaks labeled in the standard chromatogram 

correspond to putrescine (Put), diaminopropane (Dap), cadaverine (Cad), norspermidine 

(Nspd), and spermidine (Spd).  B. HPLC chromatogram depicting the polyamine 

composition of wild-type V. cholerae  C. Chromatogram confirming a lack of spermidine 

in the V. cholerae ΔpotB mutant strain. The spermidine peak at 25 min of the run is 

absent.  D. Chromatogram confirming a lack of spermidine in the V. cholerae ΔpotC 

mutant strain. The spermidine peak at 25 min of the run is absent.   A254 , absorbance at 

254 nm.   
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 To further validate and confirm the role of PotB and PotC, I complemented the 

mutant strains with a plasmid carrying the entire potB or potC genes.  These mutants 

were grown in media with 100 μM exogenous spermidine, and intracellular polyamine 

content was analyzed as previously described.  A standard mix containing 0.1 mM of 

each polyamine was prepared in order to determine the identity of the polyamines.  The 

standard mix included putrescine (Put), diaminopropane (Dap), cadaverine (Cad), 

norspermidine (Nspd), and spermidine (Spd) (Fig. 33A).  The ΔpotB mutant contained all 

polyamines except spermidine, even with the addition of increased amounts of exogenous 

spermidine further confirming that PotB is required for spermidine transport  (Fig. 33B). 

When I complemented this mutant strain with a plasmid carrying the potB gene, the 

spermidine peak was recovered (Fig. 33C).  This confirms that PotB facilitates the import 

of spermidine into the cell.   
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Fig. 33.  Confirmation that PotB is responsible for spermidine import into the cell.  

Cellular polyamines were extracted from media with exogenous spermidine added, 

derivatized by benzoylation, and analyzed by HPLC.  For clarity, only data obtained 

between 12 and 36 min of a 60 min run are plotted. A. HPLC chromatogram depicting 

the retention times of each polyamine; peaks labeled in the standard chromatogram 

correspond to putrescine (Put), diaminopropane (Dap), cadaverine (Cad), norspermidine 

(Nspd), and spermidine (Spd).  B. Chromatogram confirming a lack of spermidine in the 

V. cholerae ΔpotB mutant strain.  C. HPLC chromatogram of the ΔpotB mutant strain 

complemented with the plasmid carrying the entire potB gene.  The spermidine peak is 

present around 32-33 min, indicating that the PotB is responsible for spermidine import.   
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 Similar results were also observed with the polyamine profile of the potC mutant 

(Fig. 34B).  A standard mix containing 0.1 mM of each polyamine was prepared in order 

to determine the identity of the polyamines.  The standard mix included putrescine (Put), 

diaminopropane (Dap), cadaverine (Cad), norspermidine (Nspd), and spermidine (Spd) 

(Fig. 34A).  The ΔpotC mutant contained all polyamines except spermidine, even with 

the addition of increased amounts of exogenous spermidine further confirming that PotC 

is required for spermidine transport (Fig. 34B). When we complemented this mutant 

strain with a plasmid carrying the potC gene, the spermidine peak was recovered  (Fig. 

34C).  This confirms that PotC facilitates the import of spermidine into the cell.  
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Fig. 34.  Confirmation that PotC is responsible for spermidine import into the cell.  

Cellular polyamines were extracted from media with exogenous spermidine added, 

derivatized by benzoylation, and analyzed by HPLC.  For clarity, only data obtained 

between 12 and 36 min of a 60 min run are plotted. A. HPLC chromatogram depicting 

the retention times of each polyamine; peaks labeled in the standard chromatogram 

correspond to putrescine (Put), diaminopropane (Dap), cadaverine (Cad), norspermidine 

(Nspd), and spermidine (Spd).  B. Chromatogram confirming a lack of spermidine in the 

V. cholerae nspC::kan ΔpotC mutant strain.  C. HPLC chromatogram of the nspC::kan 

ΔpotC mutant strain complemented with the plasmid carrying the entire potC gene.  The 

spermidine peak is present around 32-33 min, indicating that the PotC is responsibe for 

spermidine import into the cell.     

 

PotB and PotC facilitate the import of norspermidine  
  

 To determine the ability of PotB and PotC to facilitate norspermidine import, a 

double mutant was constructed.  Homologous recombination was used to delete the potB 

and potC gene from the V. cholerae nspC::kan mutant.  In order to confirm that these 

strains were deficient in uptake of norspermidine, exogenous norspermidine was added to 

the media at 100 μM concentration.  Cellular polyamines were extracted, derivatized by 

benzoylation, and analyzed by HPLC as described in materials and methods.   
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 The nspC::kan ΔpotB double mutant contained putrescine, diaminopropane, and 

cadaverine due to the capability of this mutant to synthesize these three polyamines.  The 

norspermidine peak was absent because the gene responsible for norspermidine synthesis 

has been disrupted.  The lack of spermidine was due to the absence of an integral 

transport component as seen before with the single deletion mutants.  Even with the 

addition of exogenous norspermidine to the media, nspC::kan ΔpotB was unable to 

import this polyamine further suggesting that PotB is responsible for norspermidine 

transport (Fig. 35A).  When I complemented this mutant strain with a plasmid carrying 

the potB gene, the norspermidine peak was recovered around 30-31 min, as seen in the 

chromatogram below (Fig. 35B).    

 Similar results were observed regarding PotC, the nspC::kan ΔpotC double 

mutant contained the first three polyamines due to this mutant being able to synthesize 

these.  The norspermidine peak was absent due to the lack of the nspC gene and the 

spermidine peak was missing because the gene encoding for one of the transmembrane 

permeases of the spermidine transport system has been deleted.  Even with the addition 

of exogenous norspermidine to the media, this mutant could not import norspermidine 

suggesting that PotC is required for norspermidine transport (Fig. 36A).  When the 

polyamine content of the complemented mutant strain was analyzed by HPLC, the 

norspermidine peak was recovered around 30-31 min (Fig. 36B).  
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Fig. 35.  Confirmation that PotB is responsible for norspermidine import into the 

cell.  Cellular polyamines were extracted from media with exogenous norspermidine 

added, derivatized by benzoylation, and analyzed by HPLC.  For clarity, only data 

obtained between 15 and 36 min of a 60 min run are plotted. A. Chromatogram 

confirming a lack of norspermidine in the V. cholerae nspC::kan ΔpotB mutant strain.  B. 

HPLC chromatogram of the nspC::kan ΔpotB mutant strain complemented with the 

plasmid carrying the entire potB gene.  The norspermidine peak is present around 30-31 

min, indicating that the PotB functions as part of a spermidine importer.   
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Fig. 36.  Confirmation that PotC is responsible for norspermidine import into the 

cell.  Cellular polyamines were extracted from media with exogenous norspermidine 

added, derivatized by benzoylation, and analyzed by HPLC.  For clarity, only data 

obtained between 15 and 36 min of a 60 min run are plotted. A. Chromatogram 

confirming a lack of norspermidine in the V. cholerae nspC::kan ΔpotC mutant strain.  B. 

HPLC chromatogram of the nspC::kan ΔpotC mutant strain complemented with the 

plasmid carrying the entire potC gene.  The norspermidine peak is present around 30-31 

min, indicating that the PotC functions as part of a spermidine importer.   

 

Ligand preference of the substrate binding protein, PotD1 

 Due to the capability of PotD1 to facilitate import of both norspermidine and 

spermidine, the preference of this protein for one ligand over the other was studied.  V. 

cholerae nspC::kan cultures were grown with varying amounts of norspermidine and 

spermidine.  Polyamines were extracted, derivatized by benzoylation, and analyzed by 
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HPLC as described in materials and methods.  The addition of 250 μM, 500 μM 

norspermidine to a nspC::kan culture with 1 mM spermidine resulted in a small amount 

of norspermidine import (Fig. 37B and 37C) indicated by the small peak around 22-23 

minutes.  The addition of 100 μM did not result in any norspermidine uptake (Fig. 37D).  

A large amount of norspermidine was imported only upon the addition of equal amounts 

of spermidine and norspermidine (Fig. 37A).   

 This trend was not seen with the addition of 100 μM, 250 μM, 500 μM 

spermidine to a nspC::kan  culture with 1 mM norspermidine.  There was no spermidine 

peak present upon addition of reduced concentrations of spermidine to 1 mM 

norspermidine (Fig. 38).  Spermidine uptake only occurred upon the addition of equal 

amounts of spermidine and norspermidine (Fig. 38A).   
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Fig. 37. HPLC V. cholerae nspC::kan mutant with varying amounts of 

norspermidine and 1mM spermidine added to media. A. HPLC chromatogram 

representative of the V. cholerae nspC::kan mutant with 1 mM exogenous spermidine 

and 1 mM exogenous norspermidine.   B. HPLC chromatogram representative of the V. 

cholerae nspC::kan mutant with 1 mM exogenous spermidine and 500 μM exogenous 

norspermidine. C. HPLC chromatogram representative of the V. cholerae nspC::kan 

mutant with 1mM exogenous spermidine and 250 μM exogenous norspermidine.  D.  

HPLC chromatogram representative of the V. cholerae nspC::kan mutant with 1mM 

exogenous spermidine and 100 μM exogenous norspermidine. 
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 Quantification of cellular polyamines showed that norspermidine and spermidine 

present at lower amounts was not imported (Fig. 39). However, with the addition of 250 

μM and 500 μM there were slight peaks in the chromatograms indicating small amounts 

of imported norspermidine.  When both polyamines are present at the same amount, 

1mM concentration, more norspermidine is imported than spermidine (Fig. 39).  The 

results of this competition assay suggest that PotD1 does appear to have a slight 

preference for norspermidine, under the condition tested.  
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Fig. 38. HPLC V. cholerae nspC::kan mutant with varying amounts of spermidine 

and 1mM norspermidine added to media. A. HPLC chromatogram representative of 

the V. cholerae nspC::kan mutant with 1 mM exogenous spermidine and 1 mM 

exogenous norspermidine.   B. HPLC chromatogram representative of the V. cholerae 

nspC::kan mutant with 1 mM exogenous norspermidine and 500 μM exogenous 

spermidine. C. HPLC chromatogram representative of the V. cholerae nspC::kan mutant 

with 1mM exogenous norspermidine and 250 μM exogenous spermidine.  D.  HPLC 

chromatogram representative of the V. cholerae nspC::kan mutant with 1mM exogenous 

norspermidine and 100 μM exogenous spermidine.      
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Fig. 39. Analysis of polyamines extracted from nspC::kan cells grown in presence of 

varying concentrations of spermidine (spd) and norspermidine (nspd).  V. cholerae 

nspC::kan mutant was grown with varying concentrations of spermidine and 

norspermidine.  The amount of polyamines, in nmoles/mg, was calculated by taking the 

area of the curve and comparing the results to the polyamine standard. Error bars indicate 

standard deviation of three biological replicates.   

 

Spermidine import affects biofilm formation  
 

 Previous research in our lab has shown that when potD1, the gene encoding the 

substrate binding protein of the ABC transporter, is deleted there is an increase in biofilm 

formation (Mcginnis et al., 2009).  These results suggested that either spermidine 

imported into the cell decreased biofilm formation or PotD1 had a direct effect on this 

phenotype. The PotD1 orthologue PotD in E. coli has been previously shown to be 

involved in transcriptional regulation of the operon encoding the spermidine uptake 

system (Antognoni et al., 1999).  Thus, it was not clear from previous experiments in our 

lab whether PotD1 or the lack of spermidine in the cell was the determinative factor in 

regulating biofilms in V. cholerae. To differentiate between these two possibilities, 
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biofilm assays were performed as previously described and planktonic and biofilm cell 

density was measured in the pot mutants. Biofilm formation by all the pot mutants 

increased compared to V. cholerae wild-type strain (Fig. 36).  These results suggest that 

intracellular spermidine affects biofilm formation.  A decrease in the amount of 

planktonic cells was seen in all the pot mutants when compared to the wild-type strain as 

is typical with strains forming high amounts of biofilm (Fig. 36).  This further shows the 

impact spermidine has on this dynamic change from a planktonic, motile lifestyle to a 

static or biofilm-associated state.   

 

 

Fig. 40.  Biofilm formation of pot mutants compared to wild type V. cholerae.  

Biofilm formation of PotA, PotB, PotC, and PotD1 mutants is compared to wild type 

strain.  The biofilms were grown for 24 hours and this data is representative of three 

biological replicates. Relative biofilm mass was calculated by normalizing optical cell 

density readings of pot mutants to wild type.  Error bars indicate standard deviation. A 

two-tailed t-test was used to determine if the differences seen between planktonic cells of 

pot mutants and wild type were statistically significant, shown with a black star. A two-

tailed t-test was used to determine if the differences seen between biofilm associated cells 

of pot mutants and wild type were statistically significant, shown with two black stars.
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Discussion 

 

 The purpose of this study was to further characterize the role of the components 

of the ABC-type transporter, PotABCD1, in the uptake of spermidine and norspermidine, 

while elucidating its effect on biofilm formation in the aquatic bacterium V. cholerae.  

This work establishes PotABCD1 as the first norspermidine transporter reported in any 

species.  Norspermidine and spermidine are produced by both prokaryotes and 

eukaryotes, with norspermidine being one of the major polyamines in Vibrio as well as 

being found in the aquatic environment and organisms, such as sea urchins, sea 

cucumbers, aquatic plants, and algae (Hamana et al., 1998; Hamana et al., 1991). 

Norspermidine is suggested to be important to V. cholerae and its physiology due to the 

ability to synthesize this polyamine de novo as well as import it from the environment.  

Additionally, deletion of the nspC gene reduces the growth rate suggesting that 

norspermidine synthesis is essential for normal growth (Lee et al., 2009).  Furthermore, 

this polyamine makes up the backbone of the self-produced siderophore, vibriobactin, 

essential for scavenging iron for cellular processes and functions (Keating et al., 2000).   

 Previous research in the Karatan lab on the periplasmic substrate binding proteins 

of this system, PotD1 and PotD2, warranted further characterization on the other 

components of this system.  This work demonstrates that the other components, 

specifically the transmembrane permeases, PotB and PotC, also facilitate the import of 

spermidine and norspermidine.  Following deletion of the potB and potC genes, 
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intracellular polyamines were quantified by HPLC.  I observed the lack of spermidine 

uptake due to the absence of the spermidine peak.  These results suggest that these 

proteins function in uptake of this polyamine.  The role of these proteins in spermidine 

import into the cell was further confirmed by complementing the mutant strains with a 

plasmid carrying the potB or potC gene.  When intracellular polyamines were quantified 

by HPLC, these complemented strains showed a spermidine peak indicating that 

spermidine uptake was recovered, further validating the role of PotB and PotC.  To assess 

the import of norspermidine, double mutants were constructed by disrupting the synthesis 

of norspermidine and functional components of the transport system.  When exogenous 

norspermidine was added to the culture media, the peaks for both norspermidine and 

spermidine were absent in the polyamine profile of both nspC::kan ΔpotB and nspC::kan 

ΔpotC.  This indicated that PotB and PotC are responsible for the import of 

norspermidine as well.  In order to validate and confirm the uptake of norspermidine, 

these double mutant strains were complemented with a plasmid carrying the entire potB 

or potC gene and cellular polyamines were quantified by HPLC.  When exogenous 

norspermidine was added to the media, a recovery of norspermidine import was 

observed; however, this complementation did not restore uptake to levels seen in the 

wild-type strain.  Despite this, recovery of the norspermidine peak does suggest that these 

proteins are involved in norspermidine transport.  

 An interesting aspect of this transport system is the fact that PotD1 can facilitate 

uptake of both spermidine and norspermidine.  Due to the ability of this substrate binding 

protein to bind both ligands, the affinity or preference to bind to one over another was 

elucidated in this work.  Using the nspC::kan mutant, exogenous spermidine and 
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norspermidine were added to the media in varying ratios.  In analyzing HPLC data, a 

small amount of imported norspermidine was observed with the addition of 250 μM and 

500 μM exogenous norspermidine to the media with 1mM spermidine, suggesting a 

slight preference for norspermidine even with a larger amount of spermidine present.  

Furthermore, when cellular polyamines were quantified, a larger amount of 

norspermidine was imported compared to spermidine when both polyamines were present 

at equal amounts. Under the conditions tested, PotD1 does not appear to have a large 

preference for one polyamine over the other.  To further understand binding preference of 

PotD1 and quantify affinity, isothermal titration calorimetry will be utilized to obtain a 

binding constant for PotD1 to both spermidine and norspermidine.  

 This work further provides evidence in support of the role of polyamine transport 

and biofilm formation in V. cholerae.  Previous work has shown that norspermidine and 

spermidine are exogenous signals that are suggested to influence the levels of cellular c-

di-GMP levels through interaction with the NspS and MbaA signaling pathway 

(Cockerell et al., 2014; Karatan et al., 2005; Mcginnis et al., 2009).  Norspermidine and 

spermidine are capable of binding to NspS, which then influences MbaA and its 

enzymatic activity altering c-di-GMP levels in the cell.  Norspermidine increases NspS 

influence on MbaA, increasing c-di-GMP, which increases biofilm formation.  Whereas, 

spermidine acts inversely, thus hindering the inhibitory role of NspS on MbaA, which 

results in c-di-GMP hydrolysis, and subsequently a decrease in biofilm formation.  The 

effect of extracellular polyamines on biofilm formation has been studied, but the 

mechanisms by which intracellular polyamines influence biofilm formation in V. 

cholerae is still unknown.   
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 Previous work with the substrate binding protein of the PotABCD transporter in 

E. coli, found that PotD could act as a transcriptional regulator.  So it was not clear in 

previous research in our lab if PotD1 was responsible for this biofilm phenotype or 

internal spermidine was influencing biofilm.  One of the goals of this research was to 

establish that effects on biofilm formation are due to transport of extracellular spermidine 

into the cell rather than in response to direct regulation by transport system components. 

This study of the other components of the transport system confirms that spermidine 

inhibits biofilm formation in V. cholerae not only as an extracellular effector, but also 

intracellularly through an unknown mechanism following import by the ABC-type 

transporter, PotABCD1.  

 Due to their cationic nature, polyamines have been implicated in a number of 

cellular processes.  Polyamines within the cell are predominately found in complexes 

with RNA and work together with cations like Mg
2+

 to stabilize higher orders of structure 

(Shah & Swiatlo, 2008).  Because of these interactions, polyamines can influence and 

affect protein production on a number of levels.  In Pseudomonas aeruginosa, a Gram-

negative, opportunistic human pathogen, exogenous polyamines, specifically putrescine, 

have been shown to increase transcription of several loci including the spuABCDEFGH 

operon involved in polyamine uptake and utilization (Lu et al., 2002).  Additionally, 

putrescine was shown to stimulate synthesis of key response regulators in E. coli that 

mediate biofilm formation as well as affect enzymes involved in production of the 

biofilm polysaccharide of Y. pestis.  Based on this knowledge, spermidine imported into 

the cell could possibly be stimulating production of key proteins that repress biofilm 

formation by numerous mechanisms.  To further study and elucidate this mechanism of 
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intracellular spermidine, transcriptomic approaches such as RNA Sequencing could be 

used to identify the genes that are differentially expressed when spermidine is imported, 

as well as when transport is abolished.   By comparing these two different conditions, 

possible factors that are influenced by imported spermidine may be identified.  We could 

then identify a link between those factors and biofilm formation.  If spermidine is not 

affecting transcription, then proteomics could be utilized in order to observe and identify 

the major protein products that are differentially regulated under the same conditions.  

This could allow us to detect and study the networks and pathways within the cell that are 

possibly regulating biofilm formation when spermidine is imported.   

 The role of the ATPase component of this system, as well as confirmation of co- 

transcription of the putative pot operon is still ongoing. In most bacteria, genes found in 

an operon usually function in the same pathway.  In characterizing this putative ABC 

transporter, confirming that these genes are in an operon will further validate the role 

these proteins play in the transport of norspermidine and spermidine. Genes in an operon 

are co-transcribed in a polycistronic RNA.  In order to detect that the pot genes are in an 

operon, RNA will be extracted from V. cholerae, cDNA will be made, and then used in a 

PCR with gene-specific primers to amplify the intergenic space between each gene. 

Successful amplification of the intergenic region will confirm that a polycistronic RNA is 

being produced.    

 ABC transporters have a profound impact on bacterial physiology; therefore a 

better characterization of these systems is crucial.  This research further provides 

evidence to support the relevance of this novel norspermidine and spermidine transporter 

to V. cholerae physiology, especially during two critical stages of its life cycle that are 
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influenced by biofilm formation; these stages being colonizing the human host and 

dissemination and survival in the aquatic environment.  It is suggested that the biofilm 

aids in passage through the gastric acid barrier of the stomach, however once reaching the 

small intestines V. cholerae must disperse from the biofilm to be able to colonize the 

small intestine and secrete cholera toxin causing disease.  It has been reported that the 

typical human diet contributes large amounts of polyamines per day to the lumen 

(Bardocz, 1993); despite these large amounts of natural polyamines like spermidine, 

putrescine, and spermine arriving to the gut, research has shown that these polyamines 

are present at micromolar concentrations (Seidel & Scemama, 1997).  This disappearance 

of polyamines from the intestinal lumen may likely be due either to rapid absorption, 

utilization in situ, or rapid degradation in the gut (Milovic, 2001).  Based on this 

knowledge, the PotABCD1 transporter may possibly play a role in uptake of polyamines 

in the environment regulating the switch between planktonic and biofilm-associated 

states.  This work further provides evidence that spermidine is a deterrent of biofilm 

formation, so once V. cholerae passes through the gastric acid barrier of the stomach in a 

biofilm and reaches the small intestines, where spermidine is found at micromolar 

concentrations, the transporter most likely initiates import of this polyamine to inhibit 

biofilm formation.  Subsequently, V. cholerae will disperse from the biofilm and colonize 

the small intestine.   

 The other stage of life in which the ABC-type transporter may play a significant 

role is the dissemination of V. cholerae back into its natural aquatic environment after 

infection.  After colonization of the small intestine and secretion of cholera toxin, V. 

cholerae cells are shed back into the environment by the host in secretory diarrhea.  V. 
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cholerae will most likely need to scavenge nutrients and micronutrients from its natural 

aquatic environment (Kamp et al., 2013).  Research has determined through transposon 

sequencing the influence of non-essential genes on fitness of V. cholerae during survival 

in the aquatic environment.  The genes encoding the ABC-type transporter were among 

the genes identified through this screen.  Furthermore, disruption of potA, potC, and potD 

resulted in fitness defects in an aquatic environment (Kamp et al., 2013).  Based on this 

knowledge, as well as this characterization of the novel ABC-type transporter, 

PotABCD1, polyamine uptake is crucial for survival in the aquatic environment, where 

norspermidine is found generally.  Due to the ability to uptake both norspermidine and 

spermidine, this transporter is capable of mediating biofilm formation not only in the 

natural environment, but quite possibly in the host environment, further establishing 

novel ABC-type transporters, like PotABCD1 as essential components to bacterial 

physiology.  
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